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Abstract. In this paper we first reformulate a non-integrability criterion obtained by Yoshida
for Hamiltonian systems with two degrees of freedom in order to make it easier to handle those
problems whose natural formulation is given in polar coordinates, as occurs with those that have
harmonic potential. Among other applications, we prove the non-integrability of the satellite
problem under McCullagh’s approximation of the potential, i.e. truncated at ther−3 term that, in
most cases, is the main problem of the satellite of a triaxial primary body, hence its importance.

1. Introduction

Recently, the non-integrability criteria obtained by Yoshida (1987, 1989), on the basis of
Ziglin’s result (1983), have been successfully applied to some problems in satellite dynamics.
In this way, Irigoyen and Siḿo (1993) established the non-integrability of theJ2-problem,
while Ferŕandiz and Sansaturio (1995) proved the non-existence of rational integrals in the
J22-problem and, more recently, Ferrándizet al (1996) showed the non-integrability of that
of the general zonal satellite truncated at any order.

However, calculations normally turn out to be rather complicated since the potential
function of the satellite, as well as that of a wide class of problems in classical field theory,
have a natural expansion in spherical harmonics, while Yoshida’s criteria are formulated in
Cartesian coordinates and require that the kinetic energyT is a quadratic form of the type
T = 1

2|p|2.
Facing the application to the satellite problem and others of interest in dynamics, it

seems convenient to obtain analogous formulations to those of Yoshida but in polar or
spherical coordinates, especially when dealing with harmonics of a high order. It is clear
that, as the available criterion depends on whether the number of degrees of freedom is 2
or n > 2, the treatment of the planar case in polar coordinates or that of the spatial case in
spherical ones must be different.

In this paper, we reformulate Yoshida’s theorem (1987) in polar coordinates and apply it
to some subproblems of that of the satellite with a restricted perturbation. As a first simple
example, it is proved that any sectorial perturbation, when considered in isolation, gives
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rise to a non-integrable problem (in the Liouville sense) through first integrals for which
quite little demanding regularity conditions are required.

The second example is much more interesting and, probably, expected. It concerns
the non-integrability of the problem of a satellite orbiting around a rigid body of arbitrary
shape, when the potential is truncated at the term containing the factorr−3, i.e. what is
sometimes referred to as McCullagh’s potential. This approximation of the potential can be
envisaged as generating the general main problem of the satellite of a triaxial primary. It
is well known that, unlike what happens in the Earth, for many celestial bodies (the moon
being the most emblematic in the solar system) the second zonal harmonic does not give
a good representation of the potential and thus, the first approach should include all the
harmonics of order 2.

Finally, we also include a third example in which we show the convenience of using
our criterion to establish the non-integrable cases of a generalized Yang–Mills Hamiltonian.

The non-integrability criterion in polar coordinates reads as follows.

Theorem 1.LetU(r, θ) = rk W(θ) be a potential function,k being an integer butk 6= ±2, 0,
and compute the quantityλ defined by

λ = Wθθ(θ0)

kW(θ0)

whereθ0 is a root of the equationWθ(θ) = 0 such thatW(θ0) 6= 0 and the variable subscripts
denote partial derivatives.

If λ lies in the regionsSk defined below, then the Hamiltonian system

H = 1

2

(
p2
r +

p2
θ

r2

)
+ U (r, θ)

is non-integrable, i.e. there cannot exist an additional integral8 which is complex analytic
in (r, θ, pr, pθ ). The regions Sk are defined as follows

(i) k > 3

Sk = (−∞,−1) ∪
(⋃
m∈N

(
(m− 1)(mk + 2)

2
,
(m+ 1)(mk − 2)

2

))
(1)

(ii) k = 1

S1 = R−
{
−1, 0, 2, 5, 9, . . . ,

m(m+ 1)

2
− 1, . . . ;m ∈ N

}
(2)

(iii) k = −1

S−1 = R−
{

0,−1,−3,−6,−10, . . . ,−m(m+ 1)

2
, . . . ;m ∈ N

}
(3)

(iv) k 6 −3

Sk = R+ ∪
(⋃
m∈N

(
−m(m− 1)|k|

2
−m,−m(m+ 1)|k|

2
+m

))
. (4)

2. Yoshida’s criterion in polar coordinates

Yoshida considered the canonical system

dq

dt
= ∂H

∂p

dp

dt
= −∂H

∂q
(5)
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with Hamiltonian

H = 1
2p

2+ U(q) (6)

wherep = (p1, p2), q = (q1, q2) and the potential functionU(q) is homogeneous of an
integer degreek. By this assumption, equations (5) always have a straight-line solution of
the form

q = cϕ(t) p = cϕ̇(t)
whereϕ(t) is a solution of the nonlinear differential equationϕ̈(t) + ϕk−1 = 0 and the
constant vectorc = (c1, c2) is a solution of the algebraic equationc = Uq(c) in the
complex field.

Under these hypotheses, the non-integrability criterion obtained by Yoshida claims that:
‘If the quantityλY = TrUqq(c1, c2)− (k−1), whereUqq is the Hessian matrix ofU(q1, q2)

and k 6= ±2, 0, lies in the so-called non-integrability regions (Yoshida, 1987; p 128,
equation (1.3)), then the 2-degrees-of-freedom Hamiltonian (6) is non-integrable.’ The
quantityλY is referred to as the integrability coefficient.

Now, by performing the canonical transformation to polar coordinates(r, θ, pr, pθ ), the
Hamiltonian (6) becomes

H = 1

2

(
p2
r +

p2
θ

r2

)
+ U(r, θ). (7)

If we assume the potential functionU(r, θ) to be of the typeU(r, θ) = rk W(θ), wherek
is an integer butk 6= ±2, 0, the corresponding equations of motion are

dr

dt
= pr dpr

dt
= p2

θ

r3
− krk−1W

dθ

dt
= pθ

r2

dpθ
dt
= −rkWθ .

This system admits a solution of the form

θ = θ0 r = cϕ(t)
pθ = 0 pr = cϕ̇(t)

(8)

whereθ0 is a root ofWθ(θ) = 0 such thatW(θ0) 6= 0, ϕ(t) is a solution of the nonlinear
differential equationϕ̈ + ϕk−1 = 0 with initial conditionsϕ(0) = 1, ϕ̇(0) = 0 and the
constantc is a solution of the algebraic equation

1= k ck−2W(θ0). (9)

From the equations of the transformation

q1 = r cosθ

q2 = r sinθ

we easily obtain

∂2U

∂q2
1

+ ∂
2U

∂q2
2

= 1

r

[
∂

∂r

(
r
∂U

∂r

)]
+ 1

r2

∂2U

∂θ2

= k2rk−2W(θ)+ rk−2Wθθ(θ).

On the other hand

Uqq(c) = Uqq(q)
∣∣
t=0 = Uqq(q).
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In our case,

q = (r0 cosθ0, r0 sinθ0) with r0 = cϕ(0) = c.
Hence,

λY = TrUqq(c)− (k − 1) = Uq1q1(c, θ0)+ Uq2q2(c, θ0)− (k − 1)

= k2ck−2W(θ0)+ ck−2Wθθ(θ0)− (k − 1).

But according to (9)

1= W(θ0)kc
k−2 k = k2W(θ0)c

k−2

and therefore,

λY = 1+ ck−2Wθθ(θ0) = 1+ Wθθ(θ0)

kW(θ0)
.

The quantity

λ = Wθθ(θ0)

kW(θ0)

can be considered as the integrability coefficient in polar coordinates and it relates to
Yoshida’s integrability coefficient through the equationλ = λY − 1, so that the non-
integrability regionsSk obtained by Yoshida transform accordingly and give rise to the
non-integrability regions defined by equations (1)–(4).

3. The sectorial harmonic potential

Let us consider the satellite problem with the restriction that the only acting perturbation is
that due to an arbitrary sectorial term.

If we assume that the satellite is in equatorial orbit, the Hamiltonian of the problem can
be written as

H = 1

2

(
p2
r +

p2
θ

r2

)
+ r−(n+1) W(θ) n > 2 (10)

whereW(θ) = cosnθ with a suitable choice of the axes. In this case, the equation
Wθ(θ) = 0 admitsθ0 = 0 as solution.

Therefore, the integrability coefficientλ happens to be

λ = Wθθ(θ0)

kW(θ0)
= −n2 cosnθ0

−(n+ 1) cosnθ0
= n2

n+ 1
> 0.

According to our theorem 1, asR+ ⊂ Sk for k 6 −3, it follows thatλ ∈ Sk and hence,
the Hamiltonian (10) is non-integrable in the Liouville sense, i.e. there cannot exist an
additional meromorphic integral independent of the Hamiltonian itself.

Let us remark that the theory presented here would allow us to establish the non-
integrability of the planarJ22-problem in a much simpler way than that carried out
by Ferŕandiz and Sansaturio (1995). The reader is really encouraged to compare both
procedures in order to appreciate the convenience of this new formulation.
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4. The (J2+ J22)-problem or ‘general main satellite problem’

In this example we will address the problem of the motion of a particle attracted by a
rigid body of an arbitrary shape under the assumption that all the terms beyondr−3 in the
potential expansion in spherical harmonics are neglected. In addition, we will also assume
that the central body rotates with constant angular velocityω.

The resulting Hamiltonian can be considered as the ‘main problem’ for the satellites of
many celestial bodies for which the differences,C − A, B − A, between the moments of
inertia are of the same order of magnitude.

It is immediate that the problem admits planar solutions, corresponding to the equatorial
orbits, so that the Hamiltonian can be restricted to this 2-degrees-of-freedom case. Using
polar coordinates, in the extended phase space such a Hamiltonian is given by

H = 1

2

(
p2
r +

p2
θ

r2

)
− µ
r
− ωpθ + V2+ V22+ p0 = 0 (11)

where

V2 = ε2

r3
[P2(z)]z=0 =

ε2

r3

[
1

2

(
3z2− 1

)]
z=0

= − ε2

2r3
(12)

V22 = ε22

r3
cos(2θ − 2θ22) (13)

and we have adopted the usual notations for Earth satellites, so that the small parameters
in (12) and (13) are given byε2 = µJ2R

2, ε22 = µJ22R
2, in terms of the adimensional

coefficientsJ2, J22 and the constantsµ (the reduced mass) andR (a reference radius of the
body).

Note that, whenω = 0 and with a different meaning of the constants, the Hamiltonian
(11) can also describe the classical motion of a particle in the electrostatic field generated
by a uniformly charged ellipsoid.

We can assume thatθ22 = 0, which is equivalent to a suitable choice of the axes in the
inertial OXY plane and allows us to simplifyV22 = ε22r

−3 cos 2θ . Note thatJ2 and J22

are both greater than zero for the Earth (or for any body withA < B < C), and so areε2

andε22. In the general case, we can assume thatε2 andε22 have the same sign, since the
sign of ε22 can be reversed by means of aπ/2 rotation of the axes.

Now we cannot apply the non-integrability criterion directly since the Hamiltonian (11)
is not of the required type. Moreover, the procedure in section 2 cannot be followed because
a solution of the form (8) is not available. In order to overcome this drawback we will
reduce our problem to an auxiliary one with the suitable form.

By performing the change of scale(t, r, θ;p0, pr , pθ ) −→ (t̄ , r̄, θ̄; p̄0, p̄r , p̄θ ) defined
by

t = βt̄ p0 = β− 6
5 p̄0

r = β 2
5 r̄ pr = β− 3

5 p̄r

θ = θ̄ pθ = β− 1
5 p̄θ

(14)

and removing the bar in the new variables for the sake of simplicity in the notation, after
straightforward calculations, asβ → 0, (11) becomes

K = 1

2

(
p2
r +

p2
θ

r2

)
+ r−3W(θ)+ p0 = 0 (15)



5874 M E Sansaturio et al

with

W(θ) = −ε2

2
− ε22 cos 2θ

which is taken as the Hamiltonian of an auxiliary problem.
In this case,Wθ(θ) = 2ε22 sin 2θ andWθθ(θ) = 4ε22 cos 2θ , therefore the equation

Wθ(θ) = 0 admitsθ0 = 0 as solution and the integrability coefficientλ turns out to be

λ = Wθθ(θ0)

kW(θ0)
= 4ε22

3(ε2/2+ ε22)
> 0.

According to theorem 1, asR+ ⊂ Sk for k 6 −3, it follows thatλ ∈ Sk and hence, the
Hamiltonian (15) is non-integrable in the Liouville sense, which proves the non-existence
of any additional meromorphic integral. In the case ofε22 = 0, the integrability coefficient
vanishes, but it corresponds to the main problem of the zonal satellite (theJ2-problem)
studied by Irigoyen and Siḿo (1993).

Note that the set of variables used is not relevant whenever the transformation from
polar variables to new ones is meromorphic.

From the result obtained for the auxiliary problem, it is not difficult to conclude the
non-existence of additional rational integrals in the original one (11). Let us first note that
if 8(p, q, t) = constant is a rational first integral, by performing the change of variables
(14), it becomes

8(p, q, t) =
∑

m β
mfm∑

n β
nfn
= constant (16)

wherefm andfn are polynomials inp, q, t .
Expression (16) is a rational first integral of (11). Then, multiplying by an adequate

power of β and taking limits asβ → 0, we obtain a rational integral of the auxiliary
problem (15).

In the light of the fact that (15) does not have any additional meromorphic integral, it
cannot admit any additional rational integral and thus, neither does (11).

As for the spatial problem, it cannot be completely integrable through rational integrals
if we require them not to be singular on the planez = 0.

As a summary we can state the following conclusion.
The (J2+J22)-problem does not have any additional global first integral that is rational.
Note that transformation (14) would also provide the same reduced Hamiltonian (15)

if the original problem is that of the classical motion of a particle in a field created by
an electrostatic quadrupole (suitably oriented) and a uniform magnetic fieldB in the z-
direction. Hence, the previous assertions are also meaningful for this problem.

Remark. Following the same procedure as in the previous example it is also possible to
establish the rational non-integrability of any Hamiltonian of the form

H = 1

2

(
p2
r +

p2
θ

r2

)
− µ
r
+

M∑
i=−n

1

ri
Wi(θ) (17)

n being any integer such thatn 6 M andM > 2, provided the problem described by the
Hamiltonian

HM = 1

2

(
p2
r +

p2
θ

r2

)
− µ
r
+ 1

rM
WM(θ)

turns out to be non-integrable.
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This could be proved by performing a suitable change of scale, similar to (14), so that
the non-existence of rational integrals is obtained by following the same steps as before.
Likewise, it would also be possible to establish the non-existence of meromorphic integrals
by means of Yoshida’s theorem for potential functions that are sums of homogeneous terms
(Yoshida, 1988; theorem 4.1), provided the Hamiltonian (17) has a straight-line solution.

Let us finally point out that this would be the case for any satellite problem for which
the perturbed potential consists of a finite sum of even zonal terms and a finite sum of
sectorial ones. An example involving only terms of the first type was obtained by Irigoyen
(1996), who directly proved the non-existence of integrals for any truncation of the two
fixed centres problem in the symmetric case. However, when the last term is an odd zonal
harmonic, the procedure should be modified according to the authors’ results (Ferrándizet
al 1996).

5. A generalized Yang–Mills Hamiltonian

In this example we pay attention to a Yang–Mills-type Hamiltonian

H = 1
2

(
p2

1 + p2
2 + a1q

2
1 + a2q

2
2

)+ 1
4q

4
1 + 1

4a3q
4
2 + 1

2a4q
2
1q

2
2. (18)

This Hamiltonian also appears in connection with some problems in scalar field theory (cf
Fridberget al 1976) and in the semiclassical method in quantum field theory (cf Rajaraman
and Weinberg 1975). Its integrability has been studied by several authors (Bountiset al
1982, Ziglin 1983, Yoshida 1986, Villarroel 1988, Ichtiaroglou 1989) and, more recently,
Kasperczuk (1994) and Elipeet al (1995) presented the pointsa ∈ R4 providing the five
integrable cases of this problem which are known so far. They correspond to the values

(A) a1 = a2, a3 = a4 = 1,
(B) a1 = a2, a3 = 1, a4 = 3,
(C) a2 = 4a1, a3 = 16, a4 = 6,
(D) a4 = 0,
(E) a2 = 4a1, a3 = 8, a4 = 3.
The Hamiltonian (18) can be easily handled in polar coordinates to study those cases

which are definitively non-integrable. Following the same procedure as in the previous
section, the change of scale

t = βt̄
q1 = β−1q̄1 p1 = β−2p̄1

q2 = β−1q̄2 p2 = β−2p̄2

provides, asβ → 0, an auxiliary Hamiltonian with quartic potential

K = 1
2(p

2
1 + p2

2)+ 1
4q

4
1 + 1

4a3q
4
2 + 1

2a4q
2
1q

2
2 (19)

which, after performing the change to polar coordinates, turns out to be

K = 1

2

(
p2
r +

p2
θ

r2

)
+ r4W(θ) (20)

where

W(θ) = 1
4 cos4 θ + 1

4a3 sin4 θ + 1
2a4 sin2 θ cos2 θ.

Straightforward calculations provideθ0 = 0 as a solution toWθ(θ0) = 0 and the
integrability coefficient is

λ = Wθθ(θ0)

4W(θ0)
= a4− 1.
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Therefore, ask = 4 in this case, according to (1) the non-integrability regions are

(−∞,−1) ∪ (0, 2) ∪ (5, 9) ∪ (14, 20) ∪ . . . .
That is, whenevera4 belongs to

(−∞, 0) ∪ (1, 3) ∪ (6, 10) ∪ (15, 21) ∪ . . .
anda3 remains arbitrary, the Hamiltonian (20) does not have any additional meromorphic
first integral.

By means of similar arguments to those used in the previous example, the non-existence
of any additional meromorphic integral for the problem described by (19) (or (20)) leads to
the non-existence of any additional first integral of (18) that is rational.

We draw the reader’s attention to the fact that the aforementioned five known integrable
cases are placed just in some extremes of the non-integrability intervals. It seems interesting
to investigate this further, although the analysis could be rather involved. Note that the
Hamiltonian (20) has another straight-line solution atθ0 = π/2, providing the integrability
coefficientλ2 = a4/a3 − 1. Despite the obvious overlapping fora3 = 1, there exists no
inclusion relation between both cases. For instance, fora4 = 2 anda3 = 1

2 the solution at
θ0 = 0 ensures the non-integrability, whileθ0 = π/2 givesλ2 = 4 and it does not provide
any information. Nevertheless, whena4 = 4 anda3 = 2, the solution atθ0 = 0 is not
useful for establishing the non-integrability, while forθ0 = π/2 we obtainλ2 = 1 and
the non-integrability follows. On the other hand, in the previous (C) and (E) cases, the
integrability coefficient for the straight-line solutionθ0 = π/2 is λ2 = − 5

8, which is not a
limit value of the non-integrability region.

We are currently working on this subject and we expect to report on the results soon.

Acknowledgments

This work forms part of IV-A’s forthcoming PhD dissertation, under the conduction of MES
and JMF. This work was partially supported by a Spanish DGES grant number PB95–0696.

Useful comments by anonymous referees are acknowledged.

References

Bountis T, Segur H and Vivaldi F 1982Phys. Lett.25A 1257–64
Elipe A, Hietarinta J and Tompaidis S 1995Celest. Mech.62 191–2
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